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An analysis of variance (ANOVA) problem is often 
used as a general example of simultaneous inference 
since decisions about main and interaction effects are 
made concurrently. Furthermore, the various multiple- 
comparison techniques (e.g., Fisher’s LSD Procedure, 
Duncan’s New Multiple Range Method) are well-known 
methods of simultaneous inference. we wish to bring 
to the attention of ornithologists a common statistical 
error involving simultaneous inferences or conclusions 
based on two or more tests of hypotheses. Simulta- 
neous inferences are drawn from a family of concep- 
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tually related hypotheses. These related hypotheses 
usually emanate from groups of observations that are 
collected by an individual researcher or research team 
(Miller 198 1). 

As an example, consider a researcher who quantifies 
several response variables in a single study. Finch (199 1) 
used a number of reproductive measures (e.g., mean 
laying date, rates of nest failure, initial clutch size, 
fledgling rates) in a study of the effect of three levels 
of flooding on timing of reproduction and productivity 
of House Wrens (Troglodytes aedon). Because Finch 
reaches a set of simultaneous conclusions about the 
relationships among reproductive measures and flood- 
ing, they constitute a family of hypotheses. 

We set (Y, the probability of a type I error (rejection 
of the null hypothesis when it is true), at a conventional 
value such as 0.05. Therefore, the probability of ac- 
cepting the null hypothesis when true, (1 - a), is quite 
high for a single test of hypotheses (see, for example, 
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Zar 1984:44 or Ott 1984:llO). When we perform P 
tests of hypotheses on P response variables, the prob- 
ability of accepting all null hypotheses when true is (1 
- a)’ if the tests are independent. For example, if P = 
3 then the probability of accepting all three null hy- 
potheses if true is (1 - 0.05)’ or 0.8574 (Johnson and 
Wichem 1988:187). The combined probability of a 
type I error for all hypotheses, called the experiment- 
wise type I error rate and denoted by (Y’, is then 00 = 
(1 - 0.8574) or 0.1426, not 0.05. The experimentwise 
type I error rate increases with the number of simul- 
taneous tests of hypotheses; for five tests it is 0.2262, 
for 10 tests it is 0.4013, etc. So, for 01 = 0.05 and a 
large number of tests, the chances of rejecting a true 
null hypothesis at least once, (Y’, becomes much larger 
than 0.05. According to a formula called the Bonferroni 
inequality, the experimentwise type I error rate, OI’, is 
always less than or equal to (P.,) regardless of the 
correlation structure among the P tests; that is 

00 5 P.a. 

Consequently, in order to insure that the experiment- 
wise type I error rate, LY’, does not exceed, say 0.05, 
simply use a value of a equal to 0.05/P (see Morrison 
1990:32-33). 

Researchers seem to be largely unaware of the prob- 
lem regarding simultaneous conclusions drawn from 
multiple tests of hypotheses concerning two or more 
response variables. Introductory statistical texts and 
statistical references (such as Sokal and Rohlf 1981 
and Snedecor and Cochran 1989) used most frequently 
by ornithologists restrict discussion of the experi- 
mentwise type I error rate to multiple comparison tech- 
niaues for ANOVA. An examination of the 1989 issues 
of-The Auk, The Condor, and The Wilson Bulletin 
revealed at least forty instances in which multiple uni- 
variate tests were used for a data set without regard to 
inflated values of the experimentwise type I error rate. 

We describe a univariate procedure that addresses 
this problem (simultaneous inference) which is simpler 
than the multivariate procedures, but is relatively un- 
known among researchers. In fact, this univariate al- 
ternative, called the Bonferroni method, is actually su- 
perior to multivariate methods when the number of 
hypotheses is small (see Johnson and Wichem 1988: 
188-l 90). 

For a single test of hypothesis using a pooled sample 
t-test (as described, for example, by Ott 1984, df = 10, 
and LY = 0.05) the null hypothesis is rejected in favor 
of a two-sided alternative if t is greater than the critical 
value of 2.228 or less than that of -2.228. If five sets 
of hypotheses are tested simultaneously the calculation 
of the test statistics is typical of multiple t-tests but 
interpretation of the observed level of significance (P 
value) is adjusted according to the Bonferroni method, 
a method that accounts for the inflation of the exper- 
imentwise type I error incurred by simultaneous tests. 
The Bonferroni method requires us to divide the prob- 
ability of a type I error, here 0.05, by the number of 
tests and to draw our conclusions based on that new 
level of significance, namely (Y’ = 0.05/5 = 0.01. The 
critical values oft are now + 3.169. more extreme than 

trol our experimentwise type I error rate so that it does 
not exceed 0.05. Johnson and Wichem (1988) discuss 
theory and development of the Bonferroni method in 
multivariate analysis, however some of their formulas 
are in error (Johnson, pers. comm. with H.K.; corri- 
genda can be obtained from H.K.). 

The use of the Bonferroni method, namely using an 
alpha level of 0.01 for each t-test in this example, in- 
sures that the probability of incorrectly rejecting any 
one or more of the five null hypotheses is bounded by 
0.05. If the Bonferroni method is not used, then each 
t-test would be conducted at the 0.05 level of signifi- 
cance leading to an experimentwise type I error rate as 
high as 0.2262. So, null hypotheses might be rejected 
in good faith when they should not be. 

The primary disadvantage of the Bonferroni method 
is that it may be more conservative than a multivariate 
procedure, that is, the actual experimentwise type I 
error rate may be somewhat less than (Y. Rice (1989) 
discusses this problem and provides an adjustment, 
called the sequential Bonferroni technique, which in- 
creases the power of the Bonferroni procedure. For 
discrete data, Tarone (1990) has provided a modified 
Bonferroni method. 

Finally, the Bonferroni method is most effective when 
P, the number of tests, is small. As P increases, LY’ = 
a/P decreases. Since the Bonferroni method is conser- 
vative when P is large, the probability of the type II 
error (failing to reject the null hypothesis when it is 
false) becomes a concern. Generally, researchers are 
urged to carefully consider the number of tests of hy- 
potheses during the design phase of their research. Many 
researchers appear to feel that the more tests of hy- 
potheses the better. Eliminating redundant or unnec- 
essary tests of hypotheses and carefully choosing the 
sets of tests to be Bonferroni adjusted reduces P, pre- 
vents 01’ from becoming smaller than necessary, and 
bolsters the power of the tests. 

The Bonferroni method provides a solution to a se- 
rious statistical problem, namely control of the exper- 
imentwise type I error rate for simultaneous inferences. 
This solution is simple computationally and in terms 
of interpretation, and it is superior to other more com- 
plex multivariate techniques when the number of hy- 
potheses is small. The Bonferroni method can be ap- 
plied to any test procedure or confidence interval and 
is not restricted to the use of t-tests (see Morrison 1990 
for a variety of applications). It is a simple way of 
compensating for the multiplicity of significance tests 
and requires no assumptions other than those neces- 
sary for the validity of the individual significance tests 
(Miller 1981:8). 
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