
THE VOLUME OF AN EGG 

F. W. PRESTON 

IN MEMORIAM, F•A•c•s JosEPIt ASlIBY, 1895-1972 
with whom I collected my first birds' eggs June 8, 1906, in central 
England, shared my first seafowl eggs from North Wales a little 
later, and with whom I went birding and bird's-nesting for 60 years. 

RECENTLY I have received several inquiries as to how one calculates the 
volume of an egg from its "dimensions," and by dimensions is meant the 
length and the maximum breadth. The answer is that it cannot be done 
with any real accuracy on the basis of only two measurements. I have 
shown (Preston 1969) that the "shape," i.e. the longitudinal contour, of an 
egg and its size can be described with a high order of accuracy by means of 
four parameters, length, breadth, asymmetry, and bicone, and that it can- 
not usually be described with less. The contour determines the volume, and 
hence volume cannot be estimated from two measurements only. 

In cross section an egg is remarkably circular. It is therefore legitimate 
to consider an egg as a "surface of revolution," and this assumption is 
always made. An egg lies between two simple geometrical figures, a cylin- 
der and a true bicone. 

In Figure 1A, we show a cylinder of length L (= 2b) and diameter B 
(---- 2a). Its volume is (,r/4) ß LB 2 or 2,rba 2 

An ellipsoidal egg of length L and diameter B would lie entirely inside 
the cylinder, touching the centers of both ends and making contact with 
the cylindrical surface on a circle. 

In Figure lB, we show a bicone. Its volume is (,r/12) ß LB 2. Our egg 
would lie entirely outside the surfaces of the bicone, and, if symmetrical, it 
would pass through the apices of the two cones and would touch the bases 
of the cones all the way round. 

If our egg is asymmetrical, it would touch the same points and places of 
the bicone in Figure 1C, whose volume is still (?/12) ß LB 2. 

We may surmise therefore that in real eggs, which lie between Figures 
1A and 1C, asymmetry (the extent to which one end is bigger or blunter 
than the other) makes little difference to volume, but bicone makes a 
great deal, the coefficient of LB 2 varying somewhat but lying between 
(,r/4) and (*r/12). 

The preliminary assumption of the early writers is that the egg is, to a 
first approximation, an ellipsoid of revolution. If so, its volume would be 
(,r/6) ß LB 2. The approximation is sometimes quite good, and taking 
ß r = (22/7), the formula becomes 
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• ELLIPSE 

// 

Figure 1. A, a cylinder of length L (• 2b) and diameter B (---- 2a) may be regarded 
as circumscribing any egg, even a hummingbird's. B, a bicone (two cones base to base) 
will lie inside any egg, even a tinamou's, which will circumscribe it. C, the two cones 
do not need to be identical in height, though they must have the base in common. D, a 
circle circumscribes an ellipse, touching only at the ends or poles. The "eccentric 
angle" defines a parameter in terms of which the x and y coordinates of the ellipse, or 
of the oval, can be expressed. 

11 
v =- ß LB 2 (1) 

21 

a formula used by some earlier writers. 
However the approximation is sometimes not good. The hummingbirds 

(see figure in Preston 1969) lay blunt-ended eggs halfway between the 
ellipsoid and the cylinder, so the coefficient of LB 2 is much higher than 
11/21, while the grebes and tinamous lay eggs between the ellipsoid and 
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the bicone, i.e. they are pointed at both ends like an American or Rugby 
football, so the coefficient is less than 0r/6) (= 11/21). For a more de- 
tailed discussion of the inadequacies of various proposed formulae see 
Barth (1953). 

The question therefore is, in the formula V = k LB s, what is the appro- 
priate value of k? Obviously there is no one value that will fit all species. 
Indeed a single value will not fit all species of a single family, and in some 
clutches I have seen it will not fit all eggs of a single clutch. 

Below I give a mathematical treatment in more detail. 
As in Figure 1D, draw a circle circumscribing the egg, i.e. touching the 

two ends of the egg. From the center of the circle draw any radius of the 
circle, making an angle (90 ø - 0) with the long axis of the egg, till it meets 
the periphery of the circle at a point P• (shown but not marked in Figure 
1D). From P• draw a horizontal line to meet the oval or ellipse at point Pa 
(again, shown but not marked in Figure 1D). Then the coordinates (x, y) 
of Pa can be specified in terms of the angle 0, which is called the "eccentric 
angle," (see Preston 1953) and of the length and (equatorial) breadth of 
the egg. 

DIGEST 

The parametric equation of the longitudinal section of an egg may be 
taken (v. Figure 1D) as 

y = b sin 0 } x = a cos 0 (1 + c•sin 0 + casin a 0 + etc.) (see Preston 1953) (2) 
where 0 is the "eccentric angle," a is the semidiameter at the true equator 
(i.e. halfway between the two ends of the egg), b is the half-length of the 
egg, c• and ca are coefficients that vary from egg to egg and have to be 
found experimentally, and the terms labelled "+ etc." can usually be 
neglected. c• and ca are usually quite small, so that c• a, c2 a, and c•ca can 
be neglected. 

Slicing the egg parallel to the equator (perpendicular to the long axis of 
the egg) into small thicknesses dy, gives us various elements of volume 

dV = •rx a ß dy 

and the total volume of the egg is 

V = f_•r x•dy (3) 
Ignoring terms that include negligible coefficients, we have 

x a ---- aacos a 0 (1 + 2c•sin 0 + 2casin a 0) 
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and of course we have 

So 
dy--bcos0'd0 

r/2 V: •r a2b .cosaO(l+2qsinO+2c2sin20) dO (4) 
•'-•r/2 

The complete integral from •/2 to +•r/2 of the middle term vanishes 
(being -cos 4 O) and the integral reduces to 

r/2 V = • a2b (cos a 0 + 2c2cos a 0 sin 2 O) d 0 (4a) 
• -•/2 

and by writing cos a 0 = cos 0( 1 - sin 2 0), this integrates to 

2 ) (S) 
If the length of the egg is L (: 2b) and its equatorial (not necessarily 

maximum) breadth is B (= 2a) this equation takes the form 

(2) V=5'LB 2 1+•c2 (5a) 6 

If c• is zero this reduces to V = (•/6) ß LB 2, the volume of an ellipsoid 
of revolution, and it does not depend on c• at all, provided we were justi- 
fied in assuming c• is comparatively small and q2 negligible. c2 can be 
either positive or negative. With most species and individual parents, c2 is 
negative, so the volume of the egg is less than the volume of the circum- 
scribing ellipsoid. But •th hummingbirds and some others it is positive, 
and the volume is then more than that of the ellipsoid. 

EFFECT OF USING Bmax INSTEAD OF Bequatorial 

in the parametric equation y: b sin 0 } x = a cos 0 ( 1 + qsin 0 + c2sin 20 

the maximum value of x is obtained when dx/dy (not dy/dx) is zero, or, 
what is just as good, when dx/d0 = 0. 

Let 0m be the value of 0 that makes x a maximum. If cx = c2 ---- 0, the 
equation of an ellipse, we get 

dx 
--= -a sin 0, and this is zero when 0---- 0: (6) 
dO 

and this is a correct solution. 

Now let c2 = 0 but let c• be non-zero. Then, remembering that sin 0m is 
assumed small and therefore that cos 0m is very near unity, we get 
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-1 +•/1 + 4cx a 
sin 0m •--- (7) 

Remembering that cx is much less than unity, the square root term is 
very nearly (1 + 2cx2), so that 

sin 0m = cs very nearly. (7a) 

If cx and ca are both non-zero, but cos 0m is very near unity (sin 0m being 
small), we get a cubic equation for sin 0 as follows: 

c2sin s 0m •- cssin • 0m + (1 -- 2c2)sin 0m- C1 = 0 (8) 

This can be solved exactly, but if sin 0m is small (it is often less than 0.1), 
we can neglect the term in sin s 0m and get a simple quadratic, whose solu- 
tion is 

-(1 - 2c2) + •/(1 - 2c2) 2 + 4% 2 
sin 0m = (8a) 

2c• 

We may note that when c• and c2 are small (and cs tends to average 
about 0.1 and c2 about -0.1) 

sin 0m tends to be about cs, independently of the value of c2. (9) 

This locates the position of the maximum diameter. The value of that 
diameter is 

Bmax = 2Xmax ---- 2a COS 0n• (1 + cssin 0m + c•sin • 0m) 
= 2a ß X/1 - cs '• ß (1 + cs 2 + C2C12) 

or 

Bmax _ C12• B -(1 
ignoring c2c• 2 as very small, and so, remembering our previous comment on 
the square root term, 

Bmax = 1 + c12 (10) 
B 2 

For instance if c½ = 0.1, Bm•x exceeds B by about one-half of one per- 
cent. 

ERRORS IN ESTIMATING VOLUME EROM THE Two DIMENSIONS, L and B•nax 

If an experimenter measures the length and maximum diameter of an egg 
and calculates its volume by the ellipsoidal formula as 

V = -• ß LB2m•x 
6 
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he will overestimate the volume in the ratio (Braax/B) 2, that is (from 
equation 10) in the ratio 

(1 q-c•-) 2 or 1 q- cx 2 approximately (11) 
and if cx = 0.1, the error is 1%, while if cx: 0.2 (a value it reaches in only 
a few families) the error will be 4%. 

But this is not the most serious error. 

A more important error is that due to the bicone term. Since this is usu- 
ally negative, it will again produce an overestimate, of value (2/5)c2. 
Thus if c2 --- 0.1, the overestimate is 4%. In the case of the Oystercatcher 
of Preston 1953 the error would be 7%. In the case of the hummingbird or 
albatross of Preston 1969 (p. 259), the error would be a very substantial 
underestimate. 

Worth (1940) considers that it is close enough to assume, for any egg, 
that its volume is 15% less than that given by the ellipsoidal formula, and 
this I cannot concede. 

It is no use trying to refine the estimate of the volume of an egg by 
modifying arbitrarily the coefficient k in the expression 

V = k LB2raax 

from its ellipsoidal value of •-/6. Errors of 5% or more can readily occur. 
They arise from assuming that the shape of an egg is simpler than it really 
is. There are not enough data or parameters in the equation. 

THE INTERNAL AND EXTERNAL VOLUMES OF AN EGG 

Some writers are concerned with the overall (or external) volume of an 
egg (i.e. including the shell) and some are concerned more with the internal 
volume, excluding the shell. 

Stonehouse (1966) is concerned with the total, external, volume, and 
with how far it departs from the ellipsoidal volume V ---- 0.524 LB •. For a 
number of seabirds' eggs he found an average of V = 0.51 LB 2, and just 
about the same for the Australian Black Swan, Cygnus atratus. This is 
about $% ]ess than the ellipsoidal value, and is due chiefly to the "nega- 
tive bicone," the eggs being "somewhat more pointed at the ends" than a 
true ellipsoid. Even in a single species, the swan, the degree of pointedness 
varied and the deficiency of volume of course varied with it. 

Cou]son (1963) was interested in estimating the internal volume from 
the external measurements, and concluded that the internal volume aver- 
aged about 0.487 LB •, which is about 9.3% less than the (external) ellip- 
soidal formula would give. If we assume that the bicone accounts for about 
3%, there remains about 6% that must be due to the shell thickness. 
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It is easily shown that if the egg shell thickness is t and the average ex- 
ternal diameter of the egg is d, where d = x•/LB 2, then the internal volume 
falls short of the external volume by approximately 600 t/d percent. 

I measured one egg of the Gallus gallus, the domestic fowl, and found d 
to be about 1.9" (= 48 mm) and the shell thickness average about 0.015" 
(= 0.38 mm) so that 600 t/d is about 4.7%. 

I also measured one egg of Numida meleagris, the crowned or helmeted 
guinea fowl, a species whose eggs are notoriously thick-shelled. This was a 
domestic specimen, the egg apparently a trifle less in breadth, though not 
in length, than the average wild egg in South Africa. I found d to be about 
1.62" (41 mm) and t averaged about 0.022" (0.56 mm), so 600 t/d = 8.2%. 

Coulson's Kittiwake eggs were therefore intermediate, in relative shell 
thickness, between Gallus and Numida. 

Coulson was interested in estimating the age composition of a colony of 
gulls by noting that older birds tended to lay bigger, that is more volumi- 
nous eggs, but I think he could have used the breadth as effectively as the 
volume. 

Worth (1940) was interested in the problem as to whether one could 
estimate the length of the incubation period if given the volume of the egg. 
Lack (1968) discussed this point and concluded that the correlation is poor, 
and this agrees with my own, less extensive, computations. 
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