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Abstract. Model-based methods for analyzing nest survival can be used to investigate effects of con-
tinuous and categorical covariates and to produce less biased and more precise estimates of nest 
survival than design-based methods. Herein, we modeled avian nest survival using the logistic-expo-
sure method, demonstrated how to make meaningful model-based estimates of nest survival, and 
provided examples using SAS. To produce estimates of nest survival with model-based methods, 
one fi rst fi ts a model to the data and then uses that model to produce estimates for specifi c values 
of covariates in the model. Covariate values can be based on the sample (e.g., means for continu-
ous covariates and proportions for categorical covariates), however, the sample of nests (and nest-
days) is usually non-random and therefore may not be representative of the population of interest. 
Alternatively, nest-survival estimates can be based on covariate values that the investigator believes 
are more representative of the population to try and reduce bias resulting from non-random sam-
pling. We discuss a general method that can be used to reduce bias by adjusting estimates for nests 
that were never observed. We illustrate the method with an example that involves estimating period 
survival when daily survival varies by date. When the survival model includes interactions among 
covariates, main effects can be misleading; it is therefore important to present survival estimates as 
functions of the interacting covariates. When support exists for multiple models, predictions should 
be generated from each model and then averaged to produce survival and precision estimates that 
account for model selection uncertainty. We offer some suggestions for presenting model-based 
results from studies of avian nest survival.

Key Words: design-based, estimation, logistic exposure, Mayfi eld method, model based, nest survival, 
population, sample, SAS.

HACIENDO ESTIMACIONES SIGNIFICATIVAS DE SOBREVIVENCIA DE 
NIDO CON MÉTODOS BASADOS EN MODELOS
Resumen. Métodos basados en modelos para el análisis de sobrevivencia de nido pueden ser utiliza-
dos para investigar efectos de covariantes continuas y categóricas, y para producir menos polariza-
ciones negativas y estimaciones de sobrevivencia de nido más precisas que los métodos basados en 
diseño. Además, modelamos sobrevivencia de nido utilizando el método de exposición logística, 
demostramos cómo hacer estimados basados en modelos signifi cativos de sobrevivencia de nido, 
y proporcionamos ejemplos utilizando SAS. Para producir estimados de sobrevivencia de nido con 
métodos basados en modelos, primero se tiene que ajustar un modelo a los datos y después utilizar 
ese modelo para producir estimados para valores específi cos de covariantes en el modelo. Los valores 
covariantes pueden estar basados en la muestra (ej., medias para covariantes contiguas y propor-
ciones de covariantes categóricas), sin embargo, la muestra del nido (y días del nido) usualmente 
no es al azar, y por ello quizás no sea representativa para la población de interés. Alternativamente, 
las estimaciones de sobrevivencia de nido pueden ser basadas en valores covariantes los cuales el 
investigador crea sean más representativos de la población, para así tratar de reducir el sesgo causado 
por el muestreo de no azar. Discutimos un método general que puede ser utilizado para reducir el 
sesgo al ajustar estimaciones para nidos que nunca fueron observados. Ilustramos el método con un 
ejemplo que involucra período de estimación de sobrevivencia cuando la sobrevivencia diaria varía 
por día. Cuando el modelo de sobrevivencia incluye interacciones entre covariantes, efectos princi-
pales pueden ser engañosos; es por ello que es importante presentar estimaciones de sobrevivencia 
como funciones de covariantes interactuando. Cuando existe un soporte para modelos múltiples, las 
predicciones deben ser generadas de cada modelo y después ser promediadas para producir esti-
maciones de sobrevivencia y precisión que cuenten para la incertidumbre de selección del modelo. 
Ofrecemos algunas sugerencias para presentar resultados, basados en modelo para estudios de aves 
y sobrevivencia de nido.
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Recent advances in techniques for modeling 
nest survival (Dinsmore et al. 2002, Rotella et 
al. 2004, Shaffer 2004a) provide new opportu-
nities to examine nest survival in far greater 
detail than was previously possible with 
Mayfi eld’s (Mayfi eld 1975) or similar  methods 

(Johnson 1979). New methods allow daily 
survival to be rigorously modeled in terms of 
categorical, continuous, and time-dependent 
(e.g., nest age) explanatory variables. The 
new approaches can be used with simple or 
complex models and they can provide survival 
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estimates that are comparable to past stud-
ies that used Mayfi eld’s method, provided 
the investigator is willing to make the usual 
Mayfi eld assumptions that survival is constant 
nest to nest and day to day. A major advantage 
of the new techniques, however, is that they 
accommodate models in which daily survival 
rates vary among nests and among nest-days. 
These model-based estimators of nest survival 
are more realistic and precise, and less biased 
than Mayfi eld’s estimator. 

We used the logistic-exposure method 
(Shaffer 2004a) to model avian nest survival 
as a function of multiple explanatory variables 
and demonstrate how to make meaningful 
model-based estimates of survival. We describe 
various strategies for constructing model-based 
estimators and discuss circumstances under 
which one strategy may be more appropriate 
than another. We used the logistic-exposure 
method and provide examples using this 
method in SAS (SAS Institute 2004). However, 
the principles involved apply to other model-
based methods as well (Dinsmore et al. 2002, 
Nur et al. 2004; Heisey et al., this volume). We 
provide SAS code that streamlines the process 
of generating model-based estimates when mul-
tiple models are involved and model-averaging 
is necessary. We offer suggestions for present-
ing model-based results.

EMPIRICAL VERSUS MODEL-BASED 
ESTIMATION

The properties of a sample are determined 
by the manner in which data are observed. 
For instance, if sample units are obtained 
completely at random then the sample mean 
provides an unbiased estimate of the popula-
tion mean. Designs based on some form of ran-
dom sampling lend themselves to design-based 
estimation because the design itself justifi es 
the basic inference that results (Morrison et al. 
2001). Design-based estimators, also known as 
empirical estimators, involve few assumptions, 
aside from the sample being representative of 
the population as a result of random sampling. 
A study of cavity nesting in artifi cial structures 
provides an example in which design-based 
inference is possible. In this situation, monitor-
ing takes place on a sample of structures that 
can reasonably be assumed representative of a 
larger population of structures. Both success-
ful and unsuccessful nests are easily detected, 
and therefore, the apparent estimator (number 
successful/number initiated) is an unbiased, 
design-based estimator of nest survival. 
Another situation in which design-based infer-
ence might be possible involves the use of radio 

telemetry to continuously monitor females for 
evidence of nesting. 

Although design-based inference leads to 
estimators that are unbiased, those estima-
tors can have large variances in comparison 
to model-based estimators. As their name 
implies, model-based estimators arise from the 
use of a model to exploit relationships between 
a response variable (Y) and predictor variables 
(X’s), also known as covariates. For example, if 
Y is observed to vary linearly with X, then that 
relationship can be utilized in a model-based 
estimator of Y that will have smaller variance 
than the design-based estimator of Y, which 
ignores information about Y that is provided 
by X.

Non-random sampling is the norm in stud-
ies of nest survival because inactive nests do 
not have the same discovery probability as 
active nests. Therefore, design-based inference 
using the apparent estimator as illustrated 
above is usually not appropriate. Model-based 
methods can be used to increase precision 
when sampling is random, and they can help 
overcome issues resulting from certain types 
of non-random sampling. Mayfi eld’s method 
is an example of a model-based estimator that 
addresses the issue of non-random sampling. 
Mayfi eld’s model is somewhat simplistic in 
that it assumes that daily survival rates are 
constant within each stage of nesting and are 
the same for all nests. Mayfi eld’s method treats 
the nest-day, rather than the nest, as the sam-
pling unit. However, the sample of nest-days 
is itself non-random because nests are found at 
various ages and the probability of locating a 
nest is often a function of nest age. For example, 
newly initiated nests are irregularly attended 
by parents during laying and therefore are less 
likely to be found by nest searchers using meth-
ods that rely on fl ushing an adult near the nest; 
these nests are therefore underrepresented in 
samples. Mayfi eld’s assumption of constant 
survival within stage was his way of deal-
ing with this predicament. For instance, that 
assumption allows one to estimate the daily 
survival rate of a 1-d-old nest even if no 1-d-old 
nests are observed. Modern analysis tools, such 
as Shaffer’s (2004a) logistic-exposure method, 
permit greater fl exibility in addressing this and 
related issues. For example, Grant et al. (2005) 
used polynomial models to relax the assump-
tion that survival was constant day to day and 
nest to nest and to generate model-based esti-
mates of nest survival. Further complications 
resulting from uneven distribution of search 
effort across the breeding season, habitats, 
study areas, and years can also be addressed 
with model-based methods.
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DAILY SURVIVAL VERSUS PERIOD 
SURVIVAL

We use the term daily survival to refer to 
the probability that a nest survives a given day, 
conditional on it being active at the beginning 
of that day. Similarly, we use the term period 
survival to refer to the probability of surviving 
a period of several days, conditional on being 
active at the beginning of that period. Period-
survival estimates often are presented for the 
period beginning with the laying of the fi rst egg 
through the day of fl edging. Although model-
ing of nest survival is usually done in terms of 
daily survival rates, period-survival estimates 
are better-suited for some applications, such as 
when assessing population growth rates. 

Perhaps the most widely used model-based 
estimator involves the estimation of period sur-
vival (P), which is simply the product of daily 
survival rates for each day in the period: 

where the  are daily survival rate estimates and k 
is the number of days in the period. If a constant-
survival model is used then . Approximate 
lower and upper confi dence bounds for P can be 
obtained by performing the same computations 
on the lower and upper bounds for the Si. 

FITTING A MODEL

The process of generating model-based 
estimates begins with development and selec-
tion of a nest-survival model (or models). The 
model expresses nest survival (typically daily 
survival rate) as some function of covariates, 
which can be either categorical or continuous 
and be measured on a group-, nest-, or unit-of-
time (e.g., values can change daily) basis. The 
logistic-exposure method expresses the logit 
of daily survival rate as a linear combination 
of the covariates. We used the GENMOD pro-
cedure of SAS (SAS Institute 2004) to estimate 
parameters of our logistic-exposure models. 
We used the information-theoretic approach to 
rank models and assess their relative weights 
(Burnham and Anderson 2002). Model selec-
tion is an important topic that is beyond the 
scope of this paper.

Once a nest-survival model has been chosen 
and fi tted, model-based estimates of survival 
are derived by substituting specifi c values for 
each covariate in the model. If no single model 
stands out as best, model-based estimates can 
be produced from each of the top models and 
the results averaged to arrive at a single esti-
mate that refl ects both sampling variability 

and model-selection uncertainty (Burnham and 
Anderson 2002).

 
ESTIMATING SURVIVAL 

Model-based estimation differs from design-
based estimation in that the investigator must 
choose values of covariates on which estimates 
will be based. The appropriate values for 
covariates will depend on the question being 
asked and what additional information the 
investigator may have about the population of 
interest. Two questions commonly addressed 
with model-based estimation are: what is the 
survival rate for a population of interest, and 
what is the effect of a covariate on nest sur-
vival? Categorical covariates often represent 
treatments, habitats, or years, whereas con-
tinuous covariates often refl ect environmental 
factors, like precipitation, or temporal factors, 
such as nest age. Selection of covariate values 
to answer the fi rst question could be based on 
values derived from the sample of nests or on 
additional knowledge about the population of 
interest. To answer the second question, values 
of categorical covariates are usually chosen to 
isolate a given treatment level or to provide 
an average across all levels of a treatment. 
Continuous covariates are usually evaluated at 
multiple levels that span the range of values in 
the sample or population of interest. We discuss 
and illustrate these approaches in detail below. 

COVARIATE VALUES BASED ON THE SAMPLE 

With this approach, covariate values are 
derived strictly from the data. A major limita-
tion of this approach is that the sample of nests 
is usually non-random and therefore may not 
be representative of the population of interest. 
The sample mean (or median if the distribu-
tion is skewed) is the value usually used for a 
continuous covariate and the proportions of the 
sample represented by the various levels of a 
categorical covariate are used for a categorical 
variable. 

We demonstrate how to produce an esti-
mate of daily survival with SAS (SAS Institute 
2004) based on a model that includes nest stage 
(laying, incubation, and nestling) and date as 
explanatory variables (Fig. 1). The value 172 
following date in the ESTIMATE statement is 
the mean value of date in the sample, and val-
ues following stage represent the proportion of 
observations in the incubation, laying, and nest-
ling stages, respectively. The estimate produced 
by the ESTIMATE statement is in the logit scale 
and needs to be back transformed to obtain an 
estimate of the daily survival rate. To do this 
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we output the estimate using an ODS output 
statement and do the transformation in a data 
step to produce the daily survival estimate (Fig. 
1). Output from the ESTIMATE statement also 
includes the estimated standard error and 95% 
confi dence limits for the logit. Although it is not 
possible to compute a standard error for the 
daily survival rate estimate from this output, 
we can produce a confi dence interval for daily 
survival rate by back-transforming the logit 
confi dence limits. 

How should we interpret this model-based 
estimate of daily survival? Clearly it pertains 
to survival on day 172 (the average date in 
our sample), but the stage of the nesting cycle 
that this estimate refl ects is less clear. Recall 
that we used the proportions of observations 
in the incubation, laying, and nestling stages 
to weight our estimate of daily survival rate. 
Because fewer nests are often found during 
egg-laying, our sample probably under repre-
sents the proportion of time spent in the laying 
stage and over represents the proportion of time 
spent in the incubation and nestling stages. An 
estimator that does not account for differences 
in nest encounter probabilities can give a biased 
view of the average daily survival rate across all 
stages of the nesting cycle. We provide a solu-
tion to this problem in the next section.

When might estimates based on means or 
proportions from the sample of nests be useful? 
Sometimes it may be reasonable to assume that 
the observed sample of nests is refl ective of a 
larger population of nests. For example, a study 
examining nest survival of grassland passer-
ines in relation to distance to edge could result 
in a sample of nests that approximated the 
unknown distribution of distances for all nests 
initiated in a fi eld. If nest survival was found 
to vary with distance to edge, then one might 
want to base the estimate of survival of all nests 
on the average distance to an edge. A potential 
problem exists with using the mean value from 
the sample because the sample will be biased 
towards conditions that favor a nest being suc-
cessful. Thus, if survival increases with distance 
to edge, the mean distance of sample nests will 
tend to overestimate the true mean. If the effect 
of distance on survival is not strong, then the 
bias may not be a big concern, but how one 
would objectively make that determination is 
unclear. We illustrate a procedure that can be 
used to correct for this type of bias in a later 
example.

Estimates based on covariate values derived 
from the sample may be suffi cient when assess-
ing treatment effects. Suppose in the above 
example that we wish to compare survival 

SAS code:

 proc genmod data=a descending;
  class stage;
  a=1/t;
  fwdlink link = log((_mean_**a)/(1-_mean_**a));
  invlink ilink = (exp(_xbeta_)/(1+exp(_xbeta_)))**t;
  model success = stage date/ dist=bin ;
  ods output Estimates=preddsr;
  estimate ‘sample’ intercept 1 stage .43 .07 .50 date 172;
 run;

 /*transform linear prediction to dsr*/
 data preddsr2; set preddsr;
  dsr=(exp(estimate))/(1+exp(estimate));
  dsrlow95 = (exp(lowercl))/(1+exp(lowercl));
  dsrup95 = (exp(uppercl))/(1+exp(uppercl));
 run;

 proc print; run;

 Output from proc print: 

 Label Estimate StdErr Alpha LowerCL UpperCL dsr dsrlow95 dsrup95

 Sample 2.8501 0.0875 0.05 2.6786 3.0216 0.945 0.936 0.954

FIGURE 1. SAS code and selected output illustrating use of the ESTIMATE statement in PROC GENMOD to 
estimate daily nest survival using the logistic-exposure method.



STUDIES IN AVIAN BIOLOGY88 NO. 34

between managed and unmanaged grasslands. 
We must control for effects of distance to edge 
for this comparison to be meaningful. One way 
of doing that is to base the survival estimate for 
each treatment (unmanaged and managed) on 
the average value of distance calculated from 
the sample of all nests. This would be appro-
priate if the effect of distance was the same for 
both treatments (i.e., no treatment by distance 
interaction exists). However, no compelling rea-
son exists to base the comparison on the mean 
value because the estimated treatment effect 
(i.e., difference in logit survival rates) is the 
same for all values of distance, unless treatment 
and distance interact. If treatment and distance 
are found to interact, then one should estimate 
treatment effects for a range of distance values 
(see below).

COVARIATE VALUES BASED ON THE TARGET 
POPULATION

Returning to our earlier example, suppose 
we desire an estimate of average daily survival 
rate that refl ects the actual time allocated to 
each stage of nesting. We can produce such 
an estimate by specifying values of 0.19 (4/21) 
for laying, 0.48 (10/21) for incubation, and 0.33 
(7/21) for the nestling stage. Here the propor-
tions used for each stage are based on knowl-
edge that laying, incubation, and nestling 
periods are 4, 10, and 7 d, respectively. This 
estimator gives equal weight to each day of 
the nesting cycle and theoretically produces an 
unbiased estimate of the average daily survival 
rate across all days of the nesting cycle. We say 
theoretically because the model must be correct 
to ensure that the estimator will be unbiased. 
This estimator utilizes information about the 
target population of nests (i.e., the length of 
each nest stage) that is not necessarily derived 
from the sample, and is an attempt to remove 
bias that results from the sample of nest-days 
being non-random. This estimator might be 
useful for comparing survival among species 
that had different age-related patterns in daily 
survival, or different durations in laying, incu-
bation, or nestling periods. 

Estimates that refl ect the target population 
of nests are usually more desirable than those 
based on the sample. The target population 
might be defi ned as all nests initiated in a 
particular habitat block, all nests exposed to 
a particular treatment, or it can be somewhat 
nebulous as in the previous example. Consider 
an example in which the objective is to estimate 
nest survival in grass buffer strips surrounding 
wetlands in cropland. The target population is 
all nests initiated in buffer strips for some large 

cropland area. Suppose we choose a sample 
of fi ve buffer strips to survey and that some 
of those strips are too large to be surveyed 
completely. Therefore we sample only a por-
tion of the larger strips. Suppose the analysis 
indicates that survival varied among strips but 
was otherwise constant. A model-based esti-
mator that gives equal weight to each buffer, 
regardless of the buffer size, will be a biased 
estimator of overall survival unless each buf-
fer contained the same number of nests. In 
contrast, an estimator that weights each buffer 
by its area would be a reasonable estimator of 
overall survival if nest densities were similar 
among buffers. Issues like these require careful 
consideration on the part of the investigator to 
ensure that estimators are appropriate for the 
intended target population.

INTERACTIONS AMONG COVARIATES

Model-based methods can be used to demon-
strate the effect of a covariate while holding the 
effects of other covariates in the model constant, 
or to demonstrate interactions involving two (or 
more) covariates. To demonstrate this we fi t a 
logistic-exposure model with covariates nest 
height and habitat (fi eld or forest) and their inter-
action to data from Peak et al. (2004) on Indigo 
Buntings (Passerina cyanea). For ease of illustra-
tion we did not consider effects of nest stage or 
nest age. We held the effect of nest height con-
stant by using the mean value of nest height from 
the sample (0.5 m) while producing an estimate 
for fi eld and forest habitats (Figs. 2, 3a).

We also estimated daily survival across a 
range of nest heights for a population of nests 
split equally between fi eld and forest habitats 
(Fig. 2, 3b). However, strong evidence indicated 
an interaction between nest height and habitat 
in these data. Thus, it was necessary to allow 
nest height and habitat to co-vary in order 
to obtain a clear understanding of the effect 
of each variable on survival (Fig. 2, 3c). This 
example clearly shows how main effects can be 
misleading when interactions are present.

ESTIMATING PERIOD SURVIVAL WHEN SURVIVAL 
VARIES WITH DATE

Generating estimates that apply to the target 
population can be challenging because often we 
lack necessary information about that popula-
tion. Earlier we discussed the desire to base the 
survival estimate on the mean covariate value 
(distance to edge) in the target population when 
the sample mean is a biased estimator. A simi-
lar situation occurs when daily survival varies 
with date and the objective is to estimate period 
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survival of all nests (P). The problem is easily 
seen when one considers the situation in which 
nests are classifi ed as either early or late on the 
basis of nest initiation date. Let N1 and N2 be 
the numbers of initiated nests, and n1 and n2 the 
numbers of sample nests from the early and late 
periods. Let N = N1 + N2 and n = n1 + n2. Denote 
period-survival estimates for the two groups by 

 and . An intuitively reasonable estimator 
for P is (N1 /N)  + (N2 /N) . Because N1 and 
N2 are unknown, it is tempting to substitute n1 /
n for N1 /N and n2 /n for N2 /N. However, if, for 
example, P1 > P2, then the expected value of n1 /n 
will be greater than N1 /N, and the estimator of P 
will be biased toward early nests.

Miller and Johnson (1978) proposed a solu-
tion to this problem in which they estimated 
Ni by dividing the number of successful nests 
by . Dinsmore et al. (2002) and Grant et al. 
(2005) used a related approach that is based 
on methods of Horvitz and Thompson (1952) 
and that incorporates information on both 
successful and unsuccessful nests. We provide 
an example (and SAS code; Shaffer 2004b) by 
considering the second-best model for Clay-
colored Sparrow (Spizella pallida) from Grant et 
al. (2005). That model included cubic polyno-
mial age effects and linear date effects:

logit( ) = 2.054 + 0.812 × age – 0.086 × age2 + 
 0.003 × age3 – 0.006 × date (1)

We begin by asking the simple question, what 
is the period survival rate (from initiation to 
fl edge) of a nest initiated on day j? To be suc-
cessful, the nest must fi rst survive day j as a 
1-d-old nest, then survive day (j + 1) as a 2-d-old 
nest, and so on until it survives day (j + k – 1) as 
a k-d-old nest. Note that for ease of notation, we 
are considering a nest to be 1 d old during its 
fi rst day of exposure. We can express this rela-
tion as follows:

 Pj = Sj1 S(j+1) 2 ··· S(j+k-1) k (2)

It is clear from (1) and (2) that estimates of Pj 
will be different for each value of j. Period sur-
vival of all nests is a weighted average of the 
individual period survival rates: P = ∑(Nj /N)Pj, 
where Nj is the number of nests initiated on day 
j and N = ∑Nj. Thus to estimate P, we require 
estimates of the Nj (or estimates of Nj /N) for all 
j. Grant et al. (2005) estimated the Nj by scal-
ing the number of observed initiations on day 
j upward to account for nests that failed before 
they could be discovered. For example, if they 
discovered a 2-d-old nest that was initiated on 
day j, they considered that nest to represent 

 initiated nests. Similarly, a nest found at 
3 d of age was considered to represent 

 

proc genmod data=indigo ;
  class hab;
  a=1/t;
  fwdlink link = log((_mean_**a)/(1-_mean_**a));
  invlink ilink = (exp(_xbeta_)/(1+exp(_xbeta_)))**t;
  model success = hab nestht*hab/ dist=bin ;

 /* estimate DSR by habtype while holding nestht = 0.5 */
  estimate ‘fi eld’ intercept 1 hab 1 0 nestht .5 nestht*hab .5 0;
  estimate ‘forest’ intercept 1 hab 0 1 nestht .5 nestht*hab 0 .5;

 /* estimate DSR for 3 values of  nestht  giving equal weight to each habtype */
 estimate ‘nesth0’ intercept 1 hab .5 .5 nestht 0 nestht*hab 0 0;
 estimate ‘nesth1’ intercept 1 hab .5 .5 nestht 1 nestht*hab .5 .5;
 estimate ‘nesth2’ intercept 1 hab .5 .5 nestht 2 nestht*hab 1 1;

    /* estimate DSR by nestht and habtype to examine interaction */
  estimate ‘fi eld 0’ intercept 1 hab 1 0 nestht 0 nestht*hab 0 0;
  estimate ‘fi eld 1’ intercept 1 hab 1 0 nestht 1 nestht*hab 1 0;
  estimate ‘fi eld 2’ intercept 1 hab 1 0 nestht 2 nestht*hab 2 0;
  estimate ‘forest 0’ intercept 1 hab 0 1 nestht 0 nestht*hab 0 0;
  estimate ‘forest 1’ intercept 1 hab 0 1 nestht 1 nestht*hab 0 1;
  estimate ‘forest 2’ intercept 1 hab 0 1 nestht 2 nestht*hab 0 2;
run;

FIGURE 2. SAS code to estimate daily survival rates by habitat type and nest height using the logistic-exposure 
method.
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initiated nests. These values were then summed 
by date of initiation to produce estimates of the 
Nj (Fig. 4).

This type of model-based estimator has 
received relatively little use, but appears to 
have potential for improving estimates of nest 
survival and nest density. However, properties 
of the estimator and situations under which it 

performs adequately have not been thoroughly 
investigated, and Grand et al. (2006) suggested 
caution in the use of the estimator because it 
is sensitive to errors in survival estimates. In 
addition, no straightforward method currently 
exists for computing estimates of precision. 
We expect the estimator to provide reasonable 
results when samples are large (N >100), when 
daily survival rates are not excessively low 
(>0.90), when nest searches are frequent and 
span the entire nesting season, and when the 
model fi ts the data and is not over-parameter-
ized. The importance of a well-fi tting model in 
model-based estimation can not be overstated, 
especially in this situation because the survival 
model is used to estimate both the daily survival 
rates and numbers of initiated nests. Thus errors 
in prediction from the survival model have the 
potential to be compounded. We consider the 
issue of model fi t in greater detail later.

MODEL-AVERAGED ESTIMATES

We extend the above strategies for model-
based estimation based on a single model to 
the multiple-model situation in which model 
averaging is necessary. In general, we produce 
a prediction based on a given set of covariate 
values from each model and then average the 
predictions using equations 4.1 (mean) and 4.9 
(unconditional variance) from Burnham and 
Anderson (2002). We illustrate this with the 
Clay-colored Sparrow data from Grant et al. 
(2005). We consider four models for describing 
age-related patterns in survival (Fig. 5). The 
fi rst is the cubic-age model reported by Grant 
et al. (2005) The estimated logit for a 10-d-old 
nest was 3.096 ± 0.144 (SE). The second model 
allowed for linear effects of age within laying, 
incubation, and nestling stages. The estimated 
logit from this model was 2.916 ± 0.126. The 
third model allowed survival to vary among 
stages but assumed that it was constant within 
a stage. The estimated logit from this model was 
2.940 ± 0.125. The fi nal model was based on the 
assumption of constant survival from initiation 
to fl edging. The estimated logit from this model 
was 2.862 ± 0.087.

Model weights for the four models were 
0.99, 0.01, <0.01, and <0.01, respectively, which 
indicates that the cubic-age model was vastly 
superior to the other models and that model 
averaging was unnecessary. For sake of illustra-
tion, however, the model-averaged prediction 
for a 10-d-old nest would be (0.99)(3.096) + 
(0.01)(2.916) + (0)(2.940) + (0)(2.862) = 3.093.

As the above example demonstrates, the 
process of generating model-averaged predic-
tions is straightforward. In practice, however, 

FIGURE 3. Effects of two covariates and their interac-
tion from a logistic-exposure model of daily nest sur-
vival of Indigo Buntings (Passerina cyanea) in north-
east Missouri. Data are from Peak et al. (2004).
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the coding of ESTIMATE statements in SAS can 
be very tedious and prone to error. The process 
quickly becomes unwieldy as the number and 
complexity of models or ESTIMATE state-
ments increase. We developed SAS macro code 
(Shaffer 2004b) that greatly streamlines the pro-
cess and reduces opportunities for error. The 
ESTIMATE statements are created by the macro 
at the time the model is run. The user controls 
the process by specifying the desired covari-
ate values in a spreadsheet. Columns in the 
spreadsheet correspond to effects in the model, 
with column 1 being reserved for the label that 
identifi es each ESTIMATE statement. Rows cor-
respond to individual ESTIMATE statements, 
with row 1 containing the names of each effect 
in the model. Categorical covariates have a col-
umn for each category.

MODEL-BASED ESTIMATES OF PRECISION

A critical but sometimes overlooked aspect 
of estimating nest survival is deriving meaning-
ful estimates of precision. Recall in our previ-
ous example that our sample under represents 
newly initiated nests, resulting in relatively few 
nest days corresponding to very young ages on 
which to base inferences. This is refl ected in the 
cubic age and stage-specifi c linear models by 
the general narrowing of confi dence intervals 
with increasing age (Figs. 5a, b). Less noticeable 
is the tendency for the confi dence intervals to 
widen as survival decreases, refl ecting the fact 
that the variance of the binomial distribution 
approaches its maximum value as the survival 
probability approaches 0.5. Our main point 
is that the precision estimates from these two 

SAS code:

 data found;
 input initdate fi ndage @@;
 cards;
 120 7 120 3 120 1 130 11 130 6 130 13 130 3
 run;

 data inits;
  retain b0 2.054 b1 0.812 b2 -0.086 b3 0.003 b4 -0.006; /* coeff. in logistic-
   exposure model */
  set found;
  f=1;
  do age = 1 to (fi ndage-1);
   s = exp(b0 + b1*age + b2*age**2 + b3*age**3 + b4*(initdate
   + age - 1))/(1 + exp(b0 + b1*age + b2*age**2 + b3*age**3
   + b4*(initdate + age - 1)));
    f = f*s;
  end;
  found = 1;
  init = found / f;
  drop b0-b4 age s;
run;

 /* sum to determine no. nests found and to estimate no. nests initiated by date */
 proc means sum;
  class initdate;
  var found init;
 run;

 Output from proc means: 

 Initdate Nobs Variable Sum
 120 3 found 3.0000000
   init 3.5839180

 130 4 found 4.0000000
   init 5.7407344

FIGURE 4. SAS code for estimating numbers of initiated nests with a Horvitz-Thompson estimator that corrects 
for nests that failed before they could be discovered.
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models are intuitively reasonable given what 
we know about the distribution of nest ages 
from our sample.

In contrast, the stage-specifi c constant-
survival model and especially the constant-
survival model lead to precision estimates that 
seem unrealistic (Figs. 5c, d). For example, the 
number of intervals corresponding to 1-, 2-, 
3-, and 4-d-old nests were 10, 17, 28, and 43, 
respectively. Yet, the stage-specifi c constant-
survival model resulted in identical precision 
estimates for 1-, 2-, 3-, and 4-d-old nests. This 
is a consequence of the constant-survival 
assumption, and therefore the appropriateness 
of the precision estimates is highly dependent 
on the validity of that assumption. 

IMPORTANCE OF A WELL-FITTING MODEL

Model-based estimates are only as good as 
the models on which they are based. Poorly 
constructed survival models can result in 
biased estimates of survival and precision. 

Unfortunately, no easy method exists to deter-
mine how well a model fi ts the data or to 
determine if overdispersion (extra-binomial 
variation) is present. Ideally we would like 
to have some sort of goodness-of-fi t criterion 
that would allow us to assess model fi t and 
adjust variance estimates for overdispersion. 
However, the usual goodness-of-fi t tests based 
on the model deviance are not appropriate 
because the chi-square distribution provides 
a poor approximation to the sampling distri-
bution of the deviance when sample sizes are 
small (McCullagh and Nelder 1989, Dinsmore et 
al. 2002). Small sample sizes are common when 
continuous covariates are present (i.e., N = 1 for 
many levels of the covariate). Model-selection 
results can indicate the relative support for a 
model compared to other models, and likeli-
hood ratio tests can examine whether a particu-
lar model offers signifi cant improvements over 
another model, but neither assesses how well a 
model fi ts the data. Instead, one must rely on ad 
hoc methods to assess model fi t. 

FIGURE 5. Four models of the effect of nest age on daily survival of Clay-colored Sparrow (Spizella pallida) 
nests: (A) cubic-age, (B) stage-specific linear, (C) stage-specific constant, and (D) constant survival. Data are 
from Grant et al. (2005). 
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We use data from the previous example 
to illustrate a simple graphical method use-
ful for investigating model fi t. The method is 
analogous to comparing plots of observed and 
predicted values in ordinary linear regression. 
The method involves grouping observation 
intervals into discrete categories on the basis of 
the average age of the nest during the interval. 
For example, the fi rst category might consist 
of intervals in which nests were 1- or 2-d old, 
the second category would include nests that 
were 3- or 4-d old, etc. One then estimates 
daily survival for each age category (treating 
age category as a CLASS variable) and visually 
compares the predictions from the best model 
to those estimates. 

We grouped the Clay-colored Sparrow data 
into 11 age categories that included anywhere 
from 10 (age = 1−2 d) to 167 (age = 20−21 d) 
visitation intervals. Predicted values from the 
cubic age model showed close agreement with 
observed values of daily survival, except for the 
fi rst age category (Fig. 6). This is not surprising 
given the small sample of very young nests. 
In fact, this situation might be a reasonable 
candidate for some sort of a weakly structured 
modeling approach (Heisey et al., this volume), 
such as a piecewise-polynomial spline. This 
approach would blend together a simple model, 
fi t to the younger nests (where data are sparse), 
with a more complex model that applied to 
older nests. Regardless, the cubic age model 
seems to provide an adequate fi t to these data.

Cross-validation (Snee 1977) is another 
method that can be used to judge the adequacy 
of a model. Sample sizes must be large enough 

to develop models fi rst from a portion of the 
data and then evaluate those models by apply-
ing them to the remainder of the data. If cross 
validation does not reveal serious inadequacies 
with the structure of the model, then the model 
parameters can be re-estimated from the entire 
data set and model-based estimation can pro-
ceed from there.

Neither of the above methods can guarantee 
that model-based estimates of survival will 
be unbiased. However, situations in which a 
model is clearly inadequate for making mean-
ingful estimates of nest survival should become 
obvious. Models should also have some biologi-
cal basis and not be derived purely from curve 
fi tting. For example, Grant et al. (2005) argued 
that the cubic-age model was biologically rea-
sonable because survival may vary among lay-
ing, incubation and/or nestling stages either in 
response to changes in predator numbers dur-
ing the nesting season or by changes in cues that 
may allow predators to locate the nest. They 
offered several biologically based hypotheses 
that might explain patterns they observed. 

PRESENTING RESULTS

We offer some suggestions for presenting 
results from studies of nest survival. We assume 
that through some process the investigator has 
arrived at a fi nal model that has acceptable 
fi t; other papers offer guidelines for present-
ing results from model selection or hypoth-
esis testing (Anderson et al. 2001). We focus 
on presentation of model parameter estimates 
and estimates of nest survival derived from the 
model. The fi nal model could be either a single 
best-fi tting model or, in the case of multi-model 
inference, an average model. In addition to esti-
mates discussed below we recommend report-
ing descriptive statistics for covariates because 
the range of variation observed provides the 
context for inferences that are made. We also 
suggest reporting descriptive information on 
visitation intervals and age when found, as 
that information can provide a gauge to the 
degree of interval-censoring and left-truncation 
(Heisey et al. this volume), and may be useful in 
comparisons with other studies.

MODEL PARAMETER ESTIMATES

Parameter estimates, which include the 
intercept (or constant term) and coeffi cients for 
each covariate, should be presented along with 
their standard errors in text or a table. In addi-
tion the number of nests and effective sample 
size (Rotella et al. 2004) should be reported. The 
coeffi cients can be diffi cult to interpret directly 

FIGURE 6. Observed (filled symbols) and predicted 
values (open symbols) of daily-survival rates of Clay-
colored Sparrow nests (Spizella pallida). Observed val-
ues are logistic-exposure estimates based on grouping 
the data into intervals of age (i.e., 1−2 d, 3−4 d, etc.). 
Predicted values are based on the cubic-age model 
from Grant et al. (2005).
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so we also recommend presenting odds ratios 
and their confi dence intervals for covariates 
of particular interest. Odds ratios offer a more 
intuitive interpretation than the coeffi cients 
themselves (Allison 1999), and by simultane-
ously considering their magnitude and confi -
dence interval, one can evaluate the strength of 
support for the effect. 

MODEL-BASED ESTIMATES OF NEST SURVIVAL

We assume that the investigator has gener-
ated some model-based survival estimates (and 
standard errors or confi dence intervals) that are 
appropriate for the objectives. Estimates can be 
presented in tables or fi gures but fi gures often 
provide more insight, especially for continuous 
covariates or categorical covariates with several 
levels. Survival estimates should generally be 
calculated for the range of observed values of 
the covariate of interest while holding the val-
ues of other covariates in the model constant 
(see earlier sections on appropriate values for 
covariates), and provide the reader with spe-
cifi c values for variables that were held constant 
(as opposed to saying that the variable was held 
at its mean value). If interactions are present 
in the model, they should show the effects of 
one variable for a range of values of the other 
variable. Survival estimates should not be pro-
vided without estimates of precision. If fi gures 
are cluttered when estimates of precision are 
included, the analysis must clearly demonstrate 
that effects are real and properly documented 
in the text.

Although modeling is usually done in terms 
of daily survival rates (actually the logit of daily 
survival rates), we believe period-survival 
estimates are more intuitive and are therefore 
better suited for presentation in some cases. For 
example, in situations where daily survival is 
non-constant, period-survival rates can appro-
priately integrate effects of nest age or stage 
across the entire nesting cycle and simplify the 
presentation of other effects by reducing the 
number of variables in a biologically meaning-
ful way (Fig. 2 in Grant et al. 2005). One must be 
sure to include information on the length of nest 
period or nest stages used to generate period-
survival estimates. Daily survival estimates 
make sense when survival is constant (but so 
do period-survival rates) or when survival is 
non-constant and the goal is to illustrate effects 
of age (Fig. 5). 

A question we often get is should I report 
Mayfi eld estimates too? The motivation behind 
this question is usually the desire for compa-
rability with past studies that used Mayfi eld’s 
method. Generally speaking, the answer to this 

question is no. Mayfi eld’s estimator (includ-
ing Mayfi eld logistic regression; Hazler 2004) 
is based on an approximate likelihood as a 
result of the midpoint assumption (Heisey et 
al., this volume). This results in a bias that can 
be either positive or negative depending on the 
lengths of the intervals between visits (and to a 
lesser degree on the survival rates themselves 
[Johnson 1979]). Although the bias is often small 
enough to be of little concern, it is nevertheless 
a bias that is unpredictable and inconsistent 
among data sets. 

Johnson (1979) developed an alternative 
to Mayfi eld’s estimator that was based on an 
exact likelihood and log link. Johnson’s (1979) 
estimator did not receive much use because 
software was not readily available and because 
Mayfi eld’s estimator generally performed well. 
The logistic-exposure model is also based on an 
exact likelihood, but uses a different link func-
tion than Johnson’s (1979) estimator. However, 
a logistic-exposure model that assumes constant 
survival (day to day and nest to nest) will give 
results that are essentially identical to Johnson’s 
estimator (Shaffer 2004a). We compared logistic-
exposure and Mayfi eld estimates using data 
from several duck nesting studies on fi le at 
Northern Prairie Wildlife Research Center. We 
selected data sets to obtain a wide range in visi-
tation intervals (6–25 d), numbers of nests (33–
972), and 34-d-period survival rates (0.10–0.89). 
Under the assumption of constant-survival, 
logistic-exposure and Mayfi eld estimates were 
nearly identical (Table 1). Confi dence intervals 
were similar when sample sizes were small (N ≤ 
44) or modest (108 ≤ N ≤ 180), and nearly identi-
cal when sample sizes were large (N ≥ 547). We 
see no reason to report Mayfi eld estimates along 
with logistic-exposure estimates.

A more important issue is whether the 
constant-survival assumption can be justifi ed. 
Further analysis of the above data sets revealed 
signifi cant effects of age, date, or both age and 
date in data sets with N ≥ 132. Thus, estimates 
based on the constant-survival assumption are 
likely biased to some unknown degree. An even 
bigger issue is how the sample of nests relates 
to the target population. To be meaningful, esti-
mates of nest survival must be properly weighted 
to refl ect the distribution of nests in the target 
population. Often practitioners new to modern 
nest survival methods develop a model and then 
fail to use that model to estimate nest survival. 
For example, the analysis might show that sur-
vival varied by X1, X2, and X3, but the method 
used to estimate overall nest survival is to pool 
all nests without regard to how the population 
of nests was distributed with respect to X1, X2, 
and X3. This mistake can lead to serious biases. 
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Therefore, we recommend that when reporting 
results of model-based estimation, practitioners 
be explicit about the assumptions they made and 
the evidence supporting those assumptions. If 
bias is likely, then potential sources should be 
reported and discussed. 

Recent studies (Dinsmore et al. 2002, Nur et 
al. 2004, Grant et al. 2005) have demonstrated 
the importance of age as a covariate in nest-sur-
vival models. In most cases, effects of age could 
not be adequately represented by surrogates 
such as nest stage (laying, incubation, and brood 
rearing or, alternatively, egg and nestling). Yet, 
nest age is often not recorded in many nest-
ing studies. We recommend that investigators 
whenever possible measure nest age, in addi-
tion to recording nest stage and date.

A goal of many nest-survival studies is to 
obtain an unbiased estimate of nest survival for 

some population of interest. One way of achiev-
ing this would be to base the survival estimate 
on a random sample of nests from the popula-
tion. As we have discussed, random sampling 
of nests is seldom possible. Model-based meth-
ods described here offer a practical alternative, 
and when used properly provide meaningful 
estimates of nest survival.
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TABLE 1. COMPARISON OF LOGISTIC-EXPOSURE AND MAYFIELD PERIOD-SURVIVAL ESTIMATES (34 D) UNDER THE ASSUMPTION OF 
CONSTANT SURVIVAL FOR NINE DATA SETS 

 N Visitation
Species nests interval (days) Mayfi eld Logistic-exposure 
Mallard (Anas platyrhynchos)   33   6 0.27 (0.14–0.50) a 0.28 (0.12–0.45)
Blue-winged Teal (A. discors)   44 14 0.84 (0.72–0.98) 0.84 (0.66–0.93)
Gadwall (A. strepera)   35 23 0.71 (0.55–0.92) 0.71 (0.49–0.85)
Blue-winged Teal 108   9 0.27 (0.19–0.38) 0.27 (0.21–0.34)
Gadwall  132 19 0.89 (0.82–0.97) 0.89 (0.79–0.94)
Mallard  180 25 0.63 (0.54–0.74) 0.64 (0.54–0.73)
Mallard 547   7 0.10 (0.08–0.13) 0.11 (0.08–0.13)
Blue-winged Teal 553   9 0.39 (0.34–0.44) 0.39 (0.34–0.44)
Gadwall 972 21 0.32 (0.29–0.36) 0.33 (0.30–0.37)
a 95% confi dence interval.




