APPENDIX

TABLE A-1
Mean Value, Sample Size, and Standard Deviation of the Hourly Metabolic Cost of Activity of Black-billed Magpies for Periods of Visual Contact During Each Composite DAY

Phenological events	Month	\bar{x}	n	sD
Nonreproductive period				
Molt	July	1.79	17	0.34
	Aug.	1.79	14	0.22
	Sept.	2.11	17	0.52
Nonmolt	Oct.	2.86	29	1.07
	Nov.	2.90	17	0.61
	Dec.	3.07	18	0.68
Reproductive period				
Egg laying	Mar. $\%$	1.75	5	0.08
	Mar. ${ }^{\text {of }}$	1.89	12	0.07
Incubating	Apr. $¢$	1.35	3	0.08
	May ${ }^{*}$	2.35	9	0.44
Nestling	June $¢$	2.06	6	0.22
	June δ	2.62	20	0.44

a Expressed as a multiple of the hourly cost of basal metabolism.

TABLE A-2
Paired t-tests Between Composite Days of the Hourly Metabolic Cost of Activity of Black-billed Magpies

Composite days compared	1	$n+n-2$	p^{a}
Reproductive period			
Males			
Mar. ${ }^{\circ}$ with May ${ }^{\text {o }}$	3.592	19	$0.01>P>0.001$
Mar. ${ }^{\text {a }}$ with June of	5.618	30	$0.001>P$
May ot with June ${ }^{\circ}$	1.519	27	$0.2>P>0.1$
Females			
Mar. of with Apr. of	6.847	7	$0.001>P$
Mar. q with June q	2.969	9	$0.02>P>0.01$
Apr. q with June φ	5.263	7	$0.01>P>0.001$
Males vs. females			
Mar. q with Mar. ©	3.613	14	$0.01>P>0.001$
Apr. 9 with May ${ }^{\circ}$	3.796	10	$0.01>P>0.001$
June $¢$ with June of	2.951	24	$0.01>P>0.001$
Nonreproductive period			
JAS			
Sept. with Aug.	2.145	27	$0.05>P>0.02$
Sept. with July	2.124	32	$0.05>P>0.02$
Aug. with July	0.000	27	$1.0>P>0.09$
OND			
Dec. with Nov.	0.777	34	$0.5>P>0.4$
Dec. with Oct.	0.743	45	$0.5>P>0.4$
Nov. with Oct.	0.141	45	$0.9>P>0.8$
OND vs. JAS			
Dec. with Sept.	4.671	33	$0.001>P$
Dec. with Aug.	6.752	28	$0.001>P$
Dec. with July	6.977	33	$0.001>P$
Nov. with Sept.	4.064	33	$0.001>P$
Nov. with Aug.	6.455	28	$0.001>P$
Nov. with July	6.553	33	$0.001>P$
Oct. with Sept.	2.700	44	$0.02>P>0.01$
Oct. with Aug.	3.682	39	$0.001>P$
Oct. with July.	3.990	44	$0.001>P$
Nonreproductive vs. reproductive periods			
JAS vs. males			
July with June δ	6.293	35	$0.001>P$
July with May is	3.610	24	$0.01>P>0.001$
July with Mar. δ	0.999	27	$0.4>P>0.3$
Aug. with June of	6.442	30	$0.001>P$
Aug. with May os	4.070	19	$0.001>P$
Aug. with Mar. \%	1.507	22	$0.2>P>0.1$
Sept. with June δ	3.219	35	$0.01>P>0.001$
Sept. with May of	1.177	24	$0.3>P>0.2$
Sept. with Mar. \%	1.449	27	$0.27>P>0.1$
JAS vs. females			
July with June	1.802	21	$0.1>P>0.05$
July with Apr. +	2.184	18	$0.05>P>0.02$
July with Mar. ©	0.257	19	$0.8>P>0.7$

TABLE A-2
Continued

Composite days compared	t	$n+n-2$	$P^{\text {a }}$
Aug. with June q	2.515	16	$0.05>P>0.02$
Aug. with Apr. i	3.343	13	$0.01>P>0.001$
Aug. with Mar. of	0.391	14	$0.8>P>0.7$
Sept. with June 9	0.226	21	$0.9>P>0.8$
Sept. with Apr. ${ }^{\text {g }}$	2.472	18	$0.05>P>0.02$
Sept. with Mar. ㅇ	1.517	19	$0.2>P>0.1$
OND vs. males			
Oct. with June ${ }^{\text {o }}$	0.946	47	$0.4>P>0.3$
Oct. with May ${ }^{\text {o }}$	1.383	36	$0.2>P>0.1$
Oct. with Mar. ${ }^{\text {o }}$	3.114	39	$0.01>P>0.001$
Nov. with June δ	1.612	36	$0.2>P>0.1$
Nov. with May o	2.386	25	$0.05>P>0.02$
Nov. with Mar. ${ }^{\text {o }}$	4.896	28	$0.001>P$
Dec. with June ${ }^{\circ}$	2.439	36	$0.05>P>0.02$
Dec. with May ${ }^{*}$	2.875	25	$0.01>P>0.001$
Dec. with Mar. ${ }^{*}$	5.955	28	$0.001>P$
OND vs. females			
Oct. with June q	1.803	33	$0.1>P>0.05$
Oct. with Apr. it	2.408	30	$0.05>P>0.02$
Oct. with Mar. \%	2.289	31	$0.05>P>0.02$
Nov. with June 9	3.257	22	$0.01>P>0.001$
Nov. with Apr. ${ }^{\text {c }}$	4.299	19	$0.001>P$
Nov. with Mar. $\frac{7}{}$	4.134	20	$0.001>P$
Dec. with June q	3.530	22	$0.01>P>0.001$
Dec. with Apr. 9	4.285	19	$0.001>P$
Dec. with Mar. $\%$	4.261	20	$0.001>P$

[^0]
[^0]: ${ }^{a} P$ of a two tailed test.

